Menoufia University Faculty of Engineering, Shebin El-Kom **Electrical Engineering Department Postgraduate-Master of science First Semester**

Subject/Code: High and Extra-High Voltage Engineering/ ELE 607 Year : 2016-2017 Time Allowed : 3 hours Exam Date : 2 / 1/ 2017 Total Marks : 100 marks

Answer the following questions

Question 1

(1-a) Discuss the pre-breakdown discharges phenomena.

(1-b) Explain the characteristics of mean breakdown gradient of rod-plane gaps under impulse, alternating and D.C voltages as a function of gap length.

(1-c) Discuss briefly the effect of atmospheric conditions, density of air, and humidity on flashover voltage of high voltage insulators.

Question 2

(15 marks) (2-a) Explain the Obenaus flashover model of high voltage insulators considering physical, and electrical models.

(2-b) Explain the different techniques used in the washing of high voltage insulators.

Question 3

(3-a) Discuss the lightning mechanism including upward and downward initiated discharge.

(3-b) Explain how the lightning affecting power systems considering induced overvoltage, shielding failure, and backflashover scenarios.

(3-c) Discuss how to select surge arrester rating considering a high voltage system of 220 kV.

(3-d) Compare the performance characteristics of silicon carbide arrester with a zinc oxide arrester. What are the advantages and disadvantages of each?

Question 4

(4-a) Compare between the different extra high voltage cable types considering their constructions and insulation properties.

(4-b) Write short notes on: Temperature deterioration coefficient- Life expectancy factor- Safety factors.

(4-c) Classify the cooling types of extra high voltage cables with declaring the laying methods in the soil.

(4-d) A series of power-frequency tests conducted on samples of 187 kV XLPE cable gave the following breakdown probability figures and corresponding electric stresses: $P_1=20\%$ at $E_1=35.2$ kV/mm; $P_2=50\%$ at $E_2=38$ kV/mm; and $P_3=90\%$ at $E_3=43$ kV/mm. Calculate the values of E_{L_2} b, and E_0 and write the Weibull breakdown probability function for this type of voltage.

With our best wishes

Prof. Dr. Mohamed Izzularab and Dr. Amr Abdelhady

			TI	nis exam r	neasures t	he follow	ing ILOs	
Skills	Knowledge&Understanding Skills				Intellectual Skills			Professional Skills
	a1.1	a1.2	a1.5	a1.3	b1.2	b5.1	b5.3	c4.3
Question Number	lb	la	2a,b	4a,c	3c,d	1c	4b,d	3a,b,d

(25 marks)

(30 marks)

(30 marks)